If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3d^2+11d+4=0
a = 3; b = 11; c = +4;
Δ = b2-4ac
Δ = 112-4·3·4
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{73}}{2*3}=\frac{-11-\sqrt{73}}{6} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{73}}{2*3}=\frac{-11+\sqrt{73}}{6} $
| 6x+11=7x+5 | | 3x+2-7=-3 | | 3(5m+7)=3m-27 | | 2^x+1=3^x+2 | | 2g+8=7(g-1) | | 5x-4+4=3x+10-5x | | g2+4=6 | | 1648g=6948161243 | | -49=8x+3(2x-21) | | 2m=16m= | | 25=5q | | -7x+10x-12=3* | | 3j+4=2 | | 6+x/3=5 | | -2p=14/9 | | 3c+13=c+7 | | m^2-11m=60 | | j3+4=2 | | 615=10x | | 4x/7-1=10/14 | | 9m–28=2m | | 3(y-30=15 | | 3q−q=10 | | x+0.16x=6999000 | | 1(2g+8)=7(g-1) | | 49m^2+7m-20=0 | | -2x+1.5=4x-1.5 | | 5g-12=-3g+48 | | 137+x=391 | | 4x-13=42+4x | | 4(x+4)=2x+.5 | | 9x-14=6x-36 |